skip to main content


Search for: All records

Creators/Authors contains: "Li, Zhao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We measure optical colors for the bulges of 312 disk galaxies from the Carnegie-Irvine Galaxy Survey and convert their previously availableR-band structural parameters to stellar-mass parameters. We also measure their average stellar-mass surface density in the central 1 kpc (Σ1). Comparing the mass-based Kormendy relation with the original one based on flux, we find that the majority of the classifications into classical and pseudo bulges, as well as their overall statistical properties, remain essentially unchanged. While the bulge-type classifications of the Kormendy relation are robust against stellar population effects, the mass-based classification criteria do produce better agreement between bulge structural properties and their stellar populations. Moreover, the mass-based Kormendy relation reveals a population of ultradense bulges akin to high-zcompact early-type galaxies, which are otherwise hidden in the original Kormendy relation. These bulges are probably relics of spheroids assembled in the early universe, although for some we cannot rule out some contribution from secular growth. We confirm previous studies that Σ1correlates well with bulge surface densities.

     
    more » « less
  2. Abstract We implemented a user-centered approach to the design of an artificial intelligence (AI) system that provides users with access to information about the workings of the United States federal court system regardless of their technical background. Presently, most of the records associated with the federal judiciary are provided through a federal system that does not support exploration aimed at discovering systematic patterns about court activities. In addition, many users lack the data analytical skills necessary to conduct their own analyses and convert data into information. We conducted interviews, observations, and surveys to uncover the needs of our users and discuss the development of an intuitive platform informed from these needs that makes it possible for legal scholars, lawyers, and journalists to discover answers to more advanced questions about the federal court system. We report on results from usability testing and discuss design implications for AI and law practitioners and researchers. 
    more » « less
  3. Abstract

    Aqueous zinc-ion batteries, in terms of integration with high safety, environmental benignity, and low cost, have attracted much attention for powering electronic devices and storage systems. However, the interface instability issues at the Zn anode caused by detrimental side reactions such as dendrite growth, hydrogen evolution, and metal corrosion at the solid (anode)/liquid (electrolyte) interface impede their practical applications in the fields requiring long-term performance persistence. Despite the rapid progress in suppressing the side reactions at the materials interface, the mechanism of ion storage and dendrite formation in practical aqueous zinc-ion batteries with dual-cation aqueous electrolytes is still unclear. Herein, we design an interface material consisting of forest-like three-dimensional zinc-copper alloy with engineered surfaces to explore the Zn plating/stripping mode in dual-cation electrolytes. The three-dimensional nanostructured surface of zinc-copper alloy is demonstrated to be in favor of effectively regulating the reaction kinetics of Zn plating/stripping processes. The developed interface materials suppress the dendrite growth on the anode surface towards high-performance persistent aqueous zinc-ion batteries in the aqueous electrolytes containing single and dual cations. This work remarkably enhances the fundamental understanding of dual-cation intercalation chemistry in aqueous electrochemical systems and provides a guide for exploring high-performance aqueous zinc-ion batteries and beyond.

     
    more » « less
  4. Employing the strong metal-support interaction (SMSI) effect for promoting the catalyst's activity toward the oxygen reduction reaction (ORR) is promising due to the electronic structure optimization and high utilization efficiency of platinum group metal (PGM) catalysts. Metal oxides as alternative supports for PGMs facilitate intrinsic activity and improve durability as compared to conventional carbon supports. However, the restricted mass and electron transfer at the metal/support interface need to be addressed. Herein, to strengthen the interaction at the metal/support interfaces and improve the utilization efficiency of PGM, an ultralow loading of Pd was embedded in a surface-oxygenated PdNiMnO porous film. The Mn-doping was designed to promote surface oxygenation using a facile anodization process that created sufficiently exposed interfaces between Pd and the support, strengthening the SMSI effects at the Pd/oxygenated support interface for enhancing ORR performance. Furthermore, the Ni-containing oxygenated catalyst served as both the active component for the oxygen evolution reaction (OER) and the functional support for stabilizing Pd, making PdNiMnO a bifunctional catalyst for zinc–air flow batteries (ZAFB). As a proof-of-concept, the ZAFB (PdNiMnO) shows a maximal power density of 211.6 mW cm −2 and outstanding cycling stability for over 2000 h with a minimal voltage gap of 0.69 V at a current density of 10 mA cm −2 , superior to the state-of-the-art catalysts. 
    more » « less
  5. null (Ed.)
    The alkaline hydrogen evolution reaction (A-HER) holds great promise for clean hydrogen fuel generation but its practical utilization is severely hindered by the sluggish kinetics for water dissociation in alkaline solutions. Traditional ways to improve the electrochemical kinetics for A-HER catalysts have been focusing on surface modification, which still can not meet the demanding requirements for practical water electrolysis because of catalyst surface deactivation. Herein, we report an interior modification strategy to significantly boost the A-HER performance. Specifically, a trace amount of Pt was doped in the interior Co 2 P (Pt–Co 2 P) to introduce a stronger dopant–host interaction than that of the surface-modified catalyst. Consequently, the local chemical state and electronic structure of the catalysts were adjusted to improve the electron mobility and reduce the energy barriers for hydrogen adsorption and H–H bond formation. As a proof-of-concept, the interior-modified Pt–Co 2 P shows a reduced onset potential at near-zero volts for the A-HER, low overpotentials of 2 mV and 58 mV to achieve 10 and 100 mA cm −2 , and excellent durability for long-term utilization. The interior-modified Pt–Co 2 P delivers superior A-HER performance to Pt/C and other state-of-the-art electrocatalysts. This work will open a new avenue for A-HER catalyst design. 
    more » « less